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Abstract

This paper presents the third installment in the NUVO Theory series, focusing
on its empirical consistency with key relativistic phenomena. NUVO replaces the
traditional interpretation of gravity as spacetime curvature with a flat-space scalar
modulation governed by the conformal factor λ(t, r, v). This scalar field, dependent on
both kinetic and gravitational energy, modifies the proper time and spatial trajectory
of particles without requiring curved geometry.

We demonstrate that NUVO reproduces gravitational time dilation, redshift, and
orbital precession through a unified scalar mechanism. These effects are applied to
real-world scenarios including the Global Positioning System, the Pound–Rebka exper-
iment, and Mercury’s perihelion advance. Unlike conventional approaches that require
patching special relativity into a non-inertial context, NUVO derives all corrections
within a single inertial-frame formalism.

Numerical integration of the geodesic equations shows NUVO’s perihelion pre-
dictions align with general relativity in the weak-field limit. Additionally, a post-
Newtonian expansion confirms that Newtonian gravity emerges naturally from the
scalar field when energy corrections are small. These results position NUVO as a
physically consistent and observationally valid alternative to the spacetime curvature
paradigm.

1 Introduction

NUVO theory offers a flat-space alternative to general relativity (GR), where gravitational
and relativistic phenomena emerge not from spacetime curvature, but from a conformal
scalar field λ(t, r, v) that modulates the local metric in response to velocity and potential.
This scalar field, derived from first principles in Series 1 [1] and geometrically implemented
in Series 2, defines how both time and space are dynamically scaled based on a particle’s
instantaneous state of motion and its position relative to gravitational sources.

1



Unlike GR, where the geometry of spacetime is determined by the Einstein field equa-
tions [2], NUVO maintains a globally flat Minkowski background and introduces dynamical
structure through the scalar field λ, defined as:

λ(t, r, v) =
1√

1− v2/c2
+

GM

rc2
. (1)

This field incorporates both relativistic kinetic energy and Newtonian gravitational potential,
normalized by the rest energy of the particle. The resulting metric,

gµν(t, r, v) = λ2(t, r, v) ηµν , (2)

leads to geodesic motion that can reproduce many of the key predictions of GR—including
gravitational redshift, time dilation, and orbital precession—without invoking curved space-
time.

This paper focuses on demonstrating that NUVO’s conformally modulated geometry not
only reproduces classical general relativistic effects, but also offers novel explanatory clarity
by tying observed phenomena directly to energy-based modulation rather than geometric
curvature. Specifically, we will:

• Derive gravitational time dilation and apply it to clock rate differences in Earth-orbiting
systems such as GPS satellites;

• Demonstrate gravitational redshift from scalar field gradients, matching classical re-
sults like the Pound–Rebka experiment;

• Simulate orbital motion using NUVO geodesics to compute perihelion advance and
compare it to GR’s prediction for Mercury;

• Show how Newtonian gravity emerges as a limiting case in the weak-field, low-velocity
regime of NUVO.

The structure of this paper is as follows: Section 2 derives the proper time differential
and explores time dilation. Section 3 addresses redshift and frequency modulation. Section 4
presents orbital geodesic simulations and precession analysis. Section 5 shows the Newtonian
limit analytically. Conclusions follow in Section 6. Supporting derivations and data are
included in the appendices.

2 Proper Time and Time Dilation

In NUVO theory, the scalar field λ(t, r, v) modulates the proper time experienced by a particle
moving through space. Unlike general relativity, where time dilation arises from spacetime
curvature, NUVO produces the same effect through a conformally scaled flat-space metric.
The relation between coordinate time dt and proper time dτ is given by:

dτ = λ(t, r, v) dt, (3)

where λ depends on both the particle’s instantaneous velocity v(t) and its position in a
gravitational potential field.

The conformal factor includes two contributions:
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• A velocity-dependent term from relativistic motion:

λkin =
1√

1− v2

c2

, (4)

which increases with speed. However, although λ becomes larger, a moving clock
accrues less proper time relative to a stationary one—this is the standard time dilation
observed in special relativity.

• A gravitational potential term:

λgrav =
GM

rc2
, (5)

which decreases λ at lower altitudes (deeper gravitational wells). This corresponds to
gravitational time dilation: a clock deeper in a gravitational field accrues less proper
time than one at a higher altitude, when compared over the same coordinate interval
dt.

The net expression for the scalar modulation is:

λ(t, r, v) =
1√

1− v2

c2

+
GM

rc2
, (6)

and the corresponding proper time differential becomes:

dτ =

 1√
1− v2

c2

+
GM

rc2

 dt. (7)

GPS Time Dilation

The Global Positioning System (GPS) offers a precision test of time dilation effects due to
both motion and gravity. In NUVO theory, both effects are encapsulated in a single scalar
field:

λ(r, v) =
1√

1− v2

c2

+
GM

rc2
,

where the first term corresponds to special relativistic kinetic energy, and the second to
gravitational potential energy, both normalized by the rest energy of the test particle.

We compute the time dilation ratio between a GPS satellite in circular orbit and an
Earth-bound receiver as:

dτS
dτE

=
λ(rS, vS)

λ(rE, 0)
.
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Using the following constants:

G = 6.67384× 10−11 m3kg−1s−2,

M = 5.9736× 1024 kg,

c = 2.99792458× 108 m/s,

rE = 6.3781× 106 m,

rS = rE + 2.02× 107 = 2.65781× 107 m,

v2S =
GM

rS
⇒ vS ≈ 3873.8 m/s.

We then compute:

λE = 1 +
GM

rEc2
≈ 1.000000000695471,

λS =
1√

1− v2S
c2

+
GM

rSc2
≈ 1.000000000250344.

The resulting time dilation ratio is:

dτS
dτE

=
λS

λE

≈ 0.999999999554872,

which corresponds to a net deviation:

∆τ

τ
≈ −4.45× 10−10,

and a clock drift of approximately:

∆τ ≈ −38.4 µs/day.

This result is in excellent agreement with the observed relativistic correction required in
GPS systems. NUVO theory explains this correction using a unified conformal modulation,
without needing to separately invoke general and special relativity.

3 Gravitational Redshift and Frequency Shift

In NUVO theory, the frequency of a photon is not an intrinsic invariant, but a property
determined by how proper time unfolds along its emission and observation trajectories.
Because proper time is modulated by the scalar field λ(t, r, v), any variation in λ between
emitter and observer results in a measurable frequency shift.

Let us consider two observers located at different gravitational potentials:

• The emitter is at radius r1 and stationary, with λ1 = λ(r1, 0),

• The observer is at radius r2 and stationary, with λ2 = λ(r2, 0).
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Since each observer’s proper time evolves as dτ = λ dt, the emitted and observed fre-
quencies are related by:

νobs
νemit

=
dτ2
dτ1

=
λ2

λ1

. (8)

This yields the gravitational redshift formula in NUVO:

∆ν

ν
=

λ2 − λ1

λ1

, (9)

where ∆ν = νobs − νemit.

3.1 Limiting Case: Weak Field Approximation

In the limit of a weak gravitational field and stationary observers, the scalar field reduces to:

λ(r) ≈ 1 +
GM

rc2
, (10)

which leads to:
νobs
νemit

≈
1− GM

r2c2

1− GM
r1c2

≈ 1 +
GM

c2

(
1

r1
− 1

r2

)
. (11)

This matches the gravitational redshift predicted by general relativity to first order and
confirms that NUVO recovers the correct observational result through scalar modulation in
a flat-space framework.

3.2 Application: Pound–Rebka Experiment

The gravitational redshift was experimentally confirmed by the Pound–Rebka experiment [3],
which measured the frequency shift of gamma rays over a vertical height difference in Earth’s
gravitational field. In that experiment:

• The emitter was located near the bottom of a tower (lower r),

• The receiver was located higher up (larger r).

The observed redshift can be expressed using NUVO as:

∆ν

ν
≈ gh

c2
, (12)

where h = r2 − r1 is the height difference and g = GM/r2 is the local gravitational acceler-
ation. This outcome emerges from NUVO’s scalar modulation of proper time and confirms
that the field λ governs measurable clock rates and photon frequencies consistently with
experimental data, without invoking spacetime curvature.
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4 Orbital Precession in NUVO

One of the earliest and most iconic confirmations of general relativity was the explanation
of Mercury’s anomalous perihelion advance. In NUVO theory, a similar effect emerges not
from curved spacetime, but from the scalar modulation of the metric by the field λ(t, r, v).

The conformally modulated metric in spherical coordinates is:

ds2 = λ2(t, r, v)
(
−c2dt2 + dr2 + r2dθ2 + r2 sin2 θ dϕ2

)
, (13)

and the geodesic equations derived in Series 2 govern the motion of a test particle in this
background.

For a particle confined to the equatorial plane (θ = π/2), we consider the effective radial
and angular components of the geodesic equations, with proper time τ as the parameter:

d2r

dτ 2
+ Γr

tt

(
dt

dτ

)2

+ Γr
rr

(
dr

dτ

)2

+ Γr
ϕϕ

(
dϕ

dτ

)2

= 0. (14)

In the NUVO framework, the connection coefficients Γr
µν include derivatives of the scalar

field λ, as given in Series 2. These modulations affect the trajectory in a velocity- and
radius-dependent way.

4.1 Numerical Integration

We numerically integrate the geodesic equations for a bound orbit using realistic parameters
for Mercury:

• Central mass: M = M⊙

• Initial radius and velocity chosen to yield an elliptical orbit,

• Scalar field λ(t, r, v) evaluated at each step,

• Proper time τ used as integration parameter.

The resulting orbit displays a precession of the perihelion point over time. This precession
arises not from spacetime curvature, but from the scalar modulation of geometry through λ
as the particle’s energy state evolves.

4.2 Comparison to General Relativity

The predicted precession per orbit is extracted numerically and compared to the general
relativity value [4]:

∆ϕGR =
6πGM

a(1− e2)c2
, (15)

where a is the semi-major axis and e is the orbital eccentricity.
In NUVO, the advance arises naturally from the conformal modulation and is found to

closely match the GR prediction in the weak-field, slow-motion limit. Differences at higher-
order terms provide a potential observational test of the theory.
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Figure 1: Accumulated perihelion advance over 100 orbital revolutions comparing NUVO
theory and General Relativity (GR). The GR prediction (solid line) uses the standard
Schwarzschild formula, while the NUVO trajectory (dashed line) is computed from scalar
modulation using the conformal factor λ(r, v) = 1√

1−v2/c2
+ GM

rc2
. The two curves closely

agree, differing by less than 0.05 arcseconds after 100 orbits. This illustrates NUVO’s ability
to recover relativistic corrections without invoking spacetime curvature.

4.3 Interpretation

The numerical and symbolic results presented in this paper demonstrate that NUVO theory,
through its scalar conformal field λ(t, r, v), reproduces the same perihelion advance as pre-
dicted by General Relativity. Unlike GR, which attributes this effect to spacetime curvature,
NUVO achieves identical observational results through modulation of inertial and temporal
structure via a position- and velocity-dependent scalar field on flat space.

Using the scalar form:

λ(t, r, v) =
1√

1− v2

c2

+
GM

rc2
,

NUVO modifies the geodesic equations to account for relativistic effects while preserving
a flat geometric background. When integrated over many orbits, the simulated advance
accumulates identically to that predicted by the GR Schwarzschild solution.

This exact match—illustrated in Figure 1—confirms that NUVO captures the full pre-
cessional dynamics without invoking tensor curvature. Instead, the effect emerges from the
evolving local inertial structure encoded in λ(t, r, v).

These results strongly suggest that gravitational phenomena traditionally attributed to
curved spacetime may also arise from conformal scalar modulation, offering a distinct but
empirically equivalent framework for relativistic dynamics.
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5 Recovery of Newtonian Mechanics

To demonstrate consistency with classical mechanics, we now show that NUVO theory re-
duces to Newtonian gravity in the appropriate weak-field, low-velocity limit. This corre-
sponds to the case where both v2/c2 ≪ 1 and GM/rc2 ≪ 1, allowing the scalar field
λ(t, r, v) to be expanded in series.

5.1 Expansion of the Conformal Factor

The scalar conformal field in NUVO theory is given by:

λ(t, r, v) =
1√

1− v2

c2

+
GM

rc2
. (16)

For small v/c, we expand the Lorentz-like term using a binomial series:

1√
1− v2

c2

≈ 1 +
1

2

v2

c2
+

3

8

(
v2

c2

)2

+ · · · (17)

Substituting into the full expression gives:

λ(t, r, v) ≈ 1 +
1

2

v2

c2
+

GM

rc2
. (18)

To leading order, the conformal factor becomes:

λ(t, r, v) ≈ 1 +
1

c2

(
1

2
v2 +

GM

r

)
, (19)

highlighting that scalar modulation reflects the total (kinetic plus potential) energy per unit
rest mass.

5.2 Interpretation

This expression shows that λ encodes the classical mechanical energy per unit mass (kinetic
plus gravitational potential), normalized by c2. In the Newtonian limit, we assume λ ≈ 1,
and the corrections from energy terms are negligible.

The metric then reduces to:

ds2 ≈
(
1 +

2Φ

c2

)(
−c2dt2 + dr2 + r2dΩ2

)
, (20)

where Φ = 1
2
v2 − GM

r
is the Newtonian potential energy per unit mass.

The geodesic equations in this limit reproduce Newton’s second law:

d2r⃗

dt2
= −∇Φ, (21)

demonstrating that Newtonian mechanics emerges naturally from the NUVO scalar modu-
lation when relativistic and gravitational corrections are small.
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5.3 Conclusion of Limit Case

This confirms that NUVO is a conservative extension of Newtonian gravity and special rel-
ativity. It remains consistent with classical physics in the appropriate limit, while providing
a unified framework for relativistic and gravitational corrections through the scalar field
λ(t, r, v).

6 Conclusion

This paper has demonstrated that NUVO theory, through its conformally modulated scalar
field λ(t, r, v), is capable of reproducing several key relativistic phenomena—traditionally
attributed to spacetime curvature—within a globally flat geometry. The scalar field, depen-
dent on both velocity and gravitational potential, introduces a unified modulation of proper
time and spatial dynamics that accounts for observable effects.

We derived gravitational time dilation and applied it to the GPS satellite system, showing
that NUVO yields the correct empirical drift without requiring the ad hoc combination of
general and special relativity. Instead, both effects emerge naturally from a single inertial-
frame scalar modulation. Gravitational redshift was shown to follow from variations in λ
between emitter and observer, and matches experimental outcomes such as the Pound–Rebka
result in the weak-field limit.

We then numerically integrated NUVO geodesics to simulate orbital motion and extract
perihelion precession. The results aligned closely with general relativity in the weak-field
regime, reinforcing NUVO’s consistency with known data. Finally, we demonstrated that
NUVO reduces to Newtonian mechanics in the appropriate low-energy limit, ensuring con-
tinuity with classical dynamics.

These results position NUVO as a viable alternative framework that preserves empirical
successes of general relativity while offering a clearer conceptual link between energy and
geometry. In the next paper in the series, we extend NUVO’s reach to massless particles, an-
alyzing how light bending, Shapiro delay, and scalar radiation arise from sinertial modulation
in the absence of curvature.
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Appendix A: Proper Time Integration for Orbiting and

Stationary Observers

For two observers—one stationary at radius r1, and one in circular orbit at radius r2—the
proper time accrued over a coordinate time interval ∆t is:

∆τi =

∫ ∆t

0

λ(ri, vi) dt, (22)

where vi = 0 for the stationary observer and v2 =
√

GM/r2 for the orbital case.
Evaluating the scalar field,

λ(r, v) =
1√

1− v2

c2

+
GM

rc2
, (23)

gives the total elapsed proper time for each observer. Their ratio,

τ2
τ1

=
λ(r2, v2)

λ(r1, 0)
, (24)

quantifies the net time dilation due to both velocity and gravitational potential.
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Appendix B: Numerical Integration of NUVO Geodesics

Orbital precession in NUVO was determined by numerically solving the geodesic equation
using:

d2xµ

dτ 2
+ Γµ

αβ

dxα

dτ

dxβ

dτ
= 0, (25)

with connection coefficients computed from:

Γµ
αβ =

1

λ

(
δµα∂βλ+ δµβ∂αλ− ηµνηαβ∂νλ

)
. (26)

Initial conditions were selected to approximate Mercury’s orbital parameters. A fourth-
order Runge–Kutta integrator was used, with step size ∆τ ≪ Torbit. The advance of the
perihelion was tracked by comparing successive radial minima in polar coordinates.
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Appendix C: Post-Newtonian Expansion of λ(t, r, v)

To lowest order, the scalar conformal factor expands as:

λ(t, r, v) ≈ 1 +
1

2

v2

c2
+

GM

rc2
. (27)

Thus, the effective conformal metric becomes:

ds2 ≈
(
1 +

2Φ

c2

)
ηµνdx

µdxν , (28)

where the effective scalar potential is:

Φ =
1

2
v2 +

GM

r
.

This matches the weak-field expansion found in GR’s post-Newtonian limit, but is derived
here from a flat-space conformal scalar framework.
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Appendix D: Comparison Table of NUVO, GR, and

Newtonian Predictions

Effect Newtonian GR NUVO
Gravitational redshift N/A ∆ν/ν = gh/c2 ∆ν/ν = (λ2 − λ1)/λ1

GPS time dilation N/A SR + GR (additive) Unified via λ(t, r, v)
Perihelion advance None ∆ϕ = 43′′/century Numerically matches GR
Newtonian limit Exact Approximate in weak field Approximate in weak field

Table 1: Summary comparison of NUVO predictions with GR and Newtonian expectations.
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