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Abstract

NUVO theory introduces a flat-space conformal framework for gravitation and mo-
tion in which spacetime is modulated by the scalar field λ(t, r, v), derived from a test
particle’s normalized instantaneous energy state. This conformal factor adjusts the
local metric based on instantaneous velocity and gravitational context, replacing the
need for curvature with dynamic scaling. In this second paper of the NUVO series, we
develop the geodesic structure implied by this conformal transformation, deriving the
NUVO metric, its Christoffel symbols, and the resulting equations of motion. Under-
lying this structure is a refined concept of inertia, decomposed into two distinct forms:
pinertia, the coupling of a particle to space; and sinertia, the reciprocal coupling of
space to the particle. These couplings exist independently of energy terms and govern
the mutual relationship between geometry and matter.

A key conceptual advancement in this work is the reinterpretation of Special Rel-
ativity (SR) as a special case of NUVO, arising only when the theory is violated by
substituting relative velocity for the required instantaneous velocity. In that limit, in-
ertial frames emerge, and SR’s apparent effects—such as time dilation and length con-
traction—arise as observational illusions, not physical modulations. NUVO maintains
that only when acceleration is present does true modulation of space occur, leading to
measurable differences. This distinction becomes physically measurable in systems like
GPS satellites, where relativistic clock offsets arise not merely from velocity, but from
the asymmetric gravitational potential and acceleration. This work lays the mathemat-
ical and conceptual foundation for interpreting gravitational and relativistic behavior
as smooth outcomes of field-modulated flat space, rather than curved spacetime. This
paper builds directly on the scalar field derived in Series 1 and provides the geometric
foundation for observational predictions in Series 3.

1 Introduction

Building on the scalar formalism developed in Paper 1, where the conformal field λ(t, r, v)
was derived from first principles and shown to influence proper time, inertial response, and
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energy density, this work extends the NUVO framework into a covariant geometric setting.
We now examine how λ can be used to construct a conformal metric and how this metric
governs the motion of matter through modified geodesic equations.

Rather than treating the scalar field as an external modulator of physical laws, we inter-
pret it as generating an effective geometry. This allows us to compute Christoffel symbols,
analyze the geodesic equation, and predict deviations from general relativity, especially in
regimes where velocity-dependent effects become significant.

The geodesic response to λ introduces a natural separation between position-sensitive and
velocity-sensitive inertia—what we term pinertia and sinertia, respectively. These concepts
emerge as geometric consequences of motion in the conformally scaled metric and provide
new tools for interpreting acceleration, force, and free-fall in NUVO theory.

In the sections that follow, we construct the conformal metric tensor, derive the connec-
tion coefficients and geodesic structure, and present both analytical results and numerical
simulations. Our goal is to establish the scalar field not only as a modulator of dynamics
but as the generator of a self-consistent flat-space geometry.

2 Conformal Transformation and Metric Derivation

NUVO theory begins with the premise that flat spacetime—described in Minkowski form—can
be dynamically modulated by a scalar field λ(t, r, v), without requiring curvature in the tra-
ditional Riemannian sense [1]. This modulation arises from the local instantaneous energy
state of the test particle and reflects a bidirectional coupling between mass and space, cap-
tured respectively by pinertia and sinertia. This scalar field treatment parallels standard
methods in field theory, while introducing velocity-dependent structure through the confor-
mal factor λ(t, r, v).

2.1 Conformal Transformation of Flat Space

We consider the flat Minkowski metric in spherical coordinates (t, r, θ, ϕ) as the background
geometry:

ds20 = −c2dt2 + dr2 + r2dθ2 + r2 sin2 θ dϕ2.

NUVO applies a scalar conformal transformation to this background via a conformal factor
λ(t, r, v):

ds2 = λ2(t, r, v) ds20,

so that the modulated line element becomes:

ds2 = λ2(t, r, v)
[
−c2dt2 + dr2 + r2dθ2 + r2 sin2 θ dϕ2

]
. (1)

2.2 Definition of the Conformal Factor λ(t, r, v)

The scalar field λ(t, r, v) is defined by the energy state of the particle as a sum of its relativistic
kinetic energy and Newtonian gravitational potential energy, normalized by its rest energy
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mc2:

λ(t, r, v) =
1√

1− v2(t)
c2

+
GM

rc2
. (2)

This form ensures that λ(t, r, v) > 1 for all physical values of v and r, preserving the pos-
itivity and non-degeneracy of the conformally scaled metric. This modification strengthens
the link between inertial modulation and geometric curvature in NUVO’s flat-space inter-
pretation.

1. The **instantaneous velocity** v(t) must be used to reflect the physical state of the
particle at each moment, rather than a relative frame-based velocity.

2. The gravitational potential term uses the Newtonian form −GM/r, valid in weak fields
and compatible with orbital-scale systems.

3. The expression is dimensionless and normalized to the rest energy of the particle,
ensuring the scalar modulation is always relative to the particle’s own inertial frame.

2.3 Interpretation of λ in NUVO Theory

The conformal factor λ(t, r, v) serves as the scalar field that modulates all metric components.
Physically, this transforms the experience of time and space for the particle:

• Time intervals are scaled by λ, such that the proper time dτ satisfies dτ = λ dt.

• Spatial distances are likewise scaled, introducing dilation effects that correspond to
acceleration, not merely velocity.

• This modulation is dynamic, varying with time, position, and motion state, enabling
predictions of real physical deviations such as those observed in satellite-based clocks.

This approach breaks from the pseudo-Riemannian tradition of General Relativity by
preserving a globally flat background and introducing dynamical scaling instead of geomet-
ric curvature. It also avoids the requirement of stress-energy tensors to drive spacetime
deformation; the modulation arises solely from the particle’s own energy state, anchored in
pinertia and sinertia.

2.4 Conformal Metric Tensor

From Equation 1, the metric tensor in spherical coordinates becomes:

gµν(t, r, v) = λ2(t, r, v) · ηµν , (3)

where ηµν is the standard Minkowski metric in spherical form. Explicitly, the components
are:

gµν(t, r, v) = λ2(t, r, v)


−c2 0 0 0
0 1 0 0
0 0 r2 0
0 0 0 r2 sin2 θ

 .

This metric will now be used to compute the Christoffel symbols and formulate the
geodesic equations that determine free-fall motion in NUVO space.
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3 Christoffel Symbol Derivation

To describe the motion of a test particle under the NUVO conformal metric, we require the
Christoffel symbols Γµ

αβ derived from the conformally modulated metric tensor gµν(t, r, v).
These symbols encode how local geometric structure affects particle motion and are used to
construct the geodesic equation.

3.1 General Formula for Christoffel Symbols

The Christoffel symbols for a given metric gµν are defined as [2]:

Γµ
αβ =

1

2
gµσ (∂αgβσ + ∂βgασ − ∂σgαβ) , (4)

where gµσ is the inverse metric and ∂α denotes partial differentiation with respect to coordi-
nate xα.

For a conformally flat metric of the form

gµν = λ2(t, r, v) · ηµν ,

where ηµν is the Minkowski metric, the Christoffel symbols simplify to:

Γµ
αβ =

1

λ

(
δµα∂βλ+ δµβ∂αλ− ηµσηαβ∂σλ

)
, (5)

where δµα is the Kronecker delta.

3.2 Corrected Derivatives of λ(t, r, v)

We use the corrected NUVO conformal factor:

λ(t, r, v) =
1√

1 + v2(t)
c2

+
GM

rc2
. (6)

The partial derivatives required for the Christoffel symbols are:

Radial derivative:
∂λ

∂r
= −GM

r2c2
. (7)

Time derivative (via chain rule):

∂λ

∂t
= −1

2
·
(
1 +

v2

c2

)−3/2

· 2v
c2

· dv
dt

= − v

c2
(
1 + v2

c2

)3/2 · dv
dt

. (8)

4



3.3 Christoffel Symbols with Spherical Symmetry

In a spherically symmetric context (neglecting angular motion for now), many Christoffel
symbols vanish. The non-zero components include:

Γt
tr = Γt

rt =
1

λ

∂λ

∂r
, (9)

Γt
tt =

1

λ

∂λ

∂t
, (10)

Γr
tt =

c2

λ3

∂λ

∂r
, (11)

Γr
rr =

1

λ

∂λ

∂r
, (12)

Γr
rt = Γr

tr =
1

λ

∂λ

∂t
. (13)

These terms encode how the evolving scalar field λ(t, r, v) modulates acceleration in both
time and space directions, providing the geometric basis for NUVO’s generalized geodesic
motion.

3.4 Summary of Non-Zero Christoffel Symbols

The following table summarizes the non-vanishing Christoffel symbols for the NUVO confor-
mal metric in spherical coordinates, under the assumption of spherical symmetry and radial
dependence only:

Symbol Expression

Γt
tr = Γt

rt

1

λ

∂λ

∂r

Γr
tt

c2

λ3

∂λ

∂r

Γr
rr

1

λ

∂λ

∂r
Γr
θθ −r

Γr
ϕϕ −r sin2 θ

Γθ
rθ = Γθ

θr

1

r

Γϕ
rϕ = Γϕ

ϕr

1

r
Γθ
ϕϕ − sin θ cos θ

Γϕ
θϕ = Γϕ

ϕθ cot θ

Table 1: Non-zero Christoffel symbols for the NUVO metric in spherical symmetry.
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4 Geodesic Equation and Free-Fall Solutions

In NUVO theory, motion is governed by geodesics of the conformally scaled flat-space metric.
Despite the global flatness of the background, the dynamic scalar field λ(t, r, v) modulates
the structure of spacetime locally, altering the paths of free-falling particles.

4.1 Geodesic Equation Formulation

The geodesic equation for a test particle in a spacetime with metric gµν is:

d2xµ

dτ 2
+ Γµ

αβ

dxα

dτ

dxβ

dτ
= 0, (14)

where τ is the proper time experienced by the particle, and Γµ
αβ are the Christoffel symbols

computed in the previous section.
For the NUVO metric, where gµν = λ2(t, r, v) ·ηµν , the Christoffel terms are nonzero only

due to gradients in λ. This makes the geodesic path responsive to both velocity and spatial
position of the particle in a dynamic and energy-informed way.

4.2 Geodesics in the Radial–Temporal Plane

We focus on radial motion, neglecting angular components by assuming θ = const., ϕ =
const. This simplifies the geodesic system to:

d2t

dτ 2
+ 2Γt

tr

dt

dτ

dr

dτ
= 0, (15)

d2r

dτ 2
+ Γr

tt

(
dt

dτ

)2

+ Γr
rr

(
dr

dτ

)2

= 0. (16)

Substituting in expressions from Section 3:

Γt
tr =

1

λ

∂λ

∂r
, Γr

tt =
c2

λ3

∂λ

∂r
, Γr

rr =
1

λ

∂λ

∂r
.

Equation 15 becomes:
d2t

dτ 2
+ 2

(
1

λ

∂λ

∂r

)
dt

dτ

dr

dτ
= 0. (17)

Equation 16 becomes:

d2r

dτ 2
+

c2

λ3

∂λ

∂r

(
dt

dτ

)2

+
1

λ

∂λ

∂r

(
dr

dτ

)2

= 0. (18)

4.3 Physical Interpretation

The resulting geodesics display characteristics absent from both Newtonian gravity and
General Relativity:
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• The time component includes direct coupling between motion and modulation of λ,
causing proper time to evolve nonlinearly as the particle moves radially.

• The radial acceleration contains terms proportional to both (dt/dτ)2 and (dr/dτ)2,
showing how both temporal and spatial motion affect radial dynamics.

• Because λ depends on instantaneous velocity v(t), the geodesics themselves feedback
into λ, creating a coupled differential system that reflects the particle’s mutual inter-
action with space via sinertia and pinertia.

4.4 Outlook: Extension to Full 3D Geodesics

The radial–temporal geodesics derived here provide essential insight into how pinertia and
sinertia modulate free-fall motion in the simplest case. However, NUVO’s conformal geom-
etry naturally extends to full 3D systems. In future work, we will numerically integrate the
full geodesic system in (r, θ, ϕ) to analyze:

• Angular momentum transport under conformal modulation,

• Deviations from Keplerian ellipses in orbital motion,

• Precession and cycle closure effects across varying λ fields.

These results will be presented in Series 3, where the full set of NUVO geodesics will be
used to simulate planetary motion, electron orbit modulation, and the conditions for orbital
resonance closure.

4.5 Limiting Case: Inertial Frames and SR

If we neglect acceleration and hold v constant (violating NUVO’s instantaneous velocity
requirement), ∂λ/∂r → 0, and λ → λ(t, r, v). The geodesic equations reduce to:

d2xµ

dτ 2
= 0,

which are the equations for uniform motion in Minkowski spacetime—i.e., the geodesics of
Special Relativity [3].

This confirms the earlier assertion that SR emerges as a special case of NUVO under
field suppression and absence of acceleration. In that regime, space is no longer modulated,
and all dilation effects become apparent only to observers, not intrinsic to the field.1

1A detailed critique of relative velocity substitution and its incompatibility with instantaneous scalar
modulation appears in Series 1, Section 3. There, it is shown that substituting frame-relative velocity into
λ(t, r, v) violates NUVO’s foundational requirement that motion must be evaluated locally and instanta-
neously to produce physical modulation.
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4.6 Free-Fall Profile: Weak-Field Circular Motion (Preview)

In Section 6, we numerically solve the geodesic equations for test particles in weak gravita-
tional fields (e.g., planetary orbits). We show that:

• NUVO geodesics reproduce Newtonian circular motion in the low-velocity, weak-field
limit.

• Deviations from GR arise naturally due to non-linear modulation from λ without re-
quiring curvature.

• Radial advance (precession) emerges as a first-order correction, hinting at deeper com-
patibility with observed phenomena such as Mercury’s perihelion shift.

These solutions demonstrate that geodesics in NUVO spacetime are dynamically rich,
physically grounded, and analytically tractable.

5 Interpretation of Pinertia and Sinertia in Geodesic

Behavior

The geodesic equations derived in the previous section demonstrate how particle motion
evolves under the NUVO-modulated metric. Unlike General Relativity, where curvature
governs deviation from inertial paths, NUVO attributes such deviations to the dynamic
modulation of flat space by the conformal factor λ(t, r, v). This modulation arises from
the interaction between mass and space itself—manifested through two complementary con-
structs: pinertia and sinertia.

5.1 Decoupled Inertia Framework

In NUVO, the classical concept of inertia is separated into two distinct and irreducible
components:

• Pinertia — the coupling of the particle to space. It reflects how the presence of mass
binds or engages with the spatial manifold. It is the intrinsic property of matter that
“anchors” it to a location or structure within space.

• Sinertia — the coupling of space to the particle. It reflects how the structure of
space actively responds to the particle’s state, feeding back into its motion. Sinertia
represents the dynamic receptivity of space to the presence and behavior of mass.

These couplings are not derived from potential or velocity directly, but exist as funda-
mental axioms in NUVO theory. Their observable effects, however, emerge most clearly
when the particle is accelerated, thereby revealing the modulation in the field.
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5.2 Geodesic Response to Coupling

The geodesic equations reveal how each form of inertia manifests:

• The dr/dτ -sensitive term in the geodesic equation represents the influence of piner-
tia—the coupling of the particle’s position within the conformal field. This influences
how space “resists” the particle’s change in location.2

• The dt/dτ -sensitive term represents sinertia—how the particle’s motion through time
modulates and is modulated by the structure of space. It reflects how the field reacts
to the particle’s presence across its proper time trajectory.

The dynamic balance between pinertia and sinertia governs the shape and evolution of
geodesic trajectories in NUVO space. Where one dominates, motion becomes constrained in
that aspect of spacetime. In circular orbits, for example, sinertia provides the field’s resistive
structure against which stable oscillations emerge, while pinertia stabilizes radial excursions.

5.3 SR as the Collapse of Coupling

When λ is treated as a function of velocity only—and that velocity is not instantaneous but
relative—NUVO coupling collapses:

• Pinertia vanishes, as there is no spatial sensitivity in λ.

• Sinertia becomes an illusion, since λ no longer reflects a field modulation but merely
an observational frame artifact.

This corresponds to the regime of Special Relativity. Time dilation and length contrac-
tion appear in SR because observers disagree on simultaneity and synchronization—but no
physical modulation of the metric occurs. In NUVO, such effects only arise physically when
λ varies in space and time. Thus, acceleration (non-zero dv

dt
) is the key to restoring coupling

and recovering physical, rather than apparent, dilation.
In the absence of field modulation, the NUVO geodesics reduce to uniform motion in

Minkowski spacetime, recovering the familiar results of Special Relativity.

5.4 Implications for Energy and Geometry

NUVO’s separation of pinertia and sinertia implies a new view of geometry: one that is not
globally fixed by spacetime curvature, but locally emergent from mutual interaction. This
reframing carries several consequences:

• Inertia is not a resistance to force, but a dialogue between space and mass.

2This interpretation reflects the clean separation observed in spherically symmetric, radial geodesic mo-
tion. The term involving (dr/dτ)

2
is associated with pinertia, representing the coupling of the particle to

spatial displacement through a modulated geometry. In contrast, the term involving (dt/dτ)
2
is linked to

sinertia, describing how the particle’s temporal evolution is resisted or modulated by the scalar field λ(t, r, v).
This decomposition serves as a conceptual aid rather than a strict tensorial identity; in more general motions,
these couplings are entangled and not cleanly separable.
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• Energy influences geometry through modulation, not deformation.

• The field λ encodes both intrinsic and environmental influences: it depends on the test
particle’s instantaneous velocity (through γ) and on the gravitational potential from
external masses (through GM/rc2). Unlike GR, where geometry is fully sourced by
the stress–energy tensor, NUVO combines internal motion and external context into a
unified scalar modulation.

While NUVO reproduces many effects traditionally associated with the equivalence prin-
ciple—such as gravitational time dilation and free-fall geodesics—it achieves this through
a fundamentally different mechanism. Gravity is not the curvature of spacetime, but the
differential modulation of a scalar field λ(t, r, v) in response to motion and potential. Al-
though NUVO aligns with the observable consequences of the equivalence principle in many
regimes, subtle violations may emerge under conditions involving high acceleration, velocity
history, or self-interacting bodies—offering potential experimental tests that distinguish it
from general relativity.

5.5 Unified Interpretation of Motion

This perspective provides a powerful unifying principle. Newtonian mechanics emerges in the
limit where λ → 1 and coupling is negligible. Special Relativity emerges when instantaneous
velocity is replaced with relative velocity, suppressing the field. NUVO governs the general
case: where acceleration, instantaneous state, and scalar field interaction are all active, and
where observable time dilation, redshift, and precession naturally arise from field response.

In the next section, we present numerical simulations illustrating how these geodesic
effects evolve in orbital and accelerating systems, further validating the physical implications
of NUVO coupling and the field λ(t, r, v).

Illustrative Example: Circular Orbit in NUVO

To visualize the roles of pinertia and sinertia, consider a test particle in a stable circular
orbit around a central mass. In NUVO theory, the conformal field λ(t, r, v) modulates the
experienced geometry based on both instantaneous velocity and gravitational potential.

In this context:

• Pinertia governs the particle’s spatial coupling to the field—specifically, how varia-
tions in radial position r influence the modulation. It reflects how strongly space resists
radial excursions from equilibrium. When the radius changes, the potential term in λ
(i.e., GM/rc2) is altered, leading to shifts in the local geodesic structure.

• Sinertia, more broadly, governs how the field responds to the particle’s state of motion.
This includes not only its clock rate (through dt/dτ), but also its angular velocity
dϕ/dτ , which directly contributes to the relativistic kinetic term γ(v). In a circular
orbit, the velocity remains constant, but the persistent angular motion sustains a fixed
contribution to λ. Sinertia thus reflects the feedback of space to this sustained motion,
influencing both proper time evolution and the stability of the orbit.
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Together, these couplings define how space responds to the presence and motion of the
particle. Pinertia regulates the tendency to deviate radially, while sinertia governs the ge-
ometric tension induced by continuous motion—even in the absence of radial acceleration.
The dynamic equilibrium achieved in a circular orbit is therefore a balance between radial
geometric resistance and the persistent modulation of proper time and angular structure
induced by velocity.

This example demonstrates that sinertia should not be limited to temporal coupling alone,
but must be understood as encompassing the broader modulation of geometry in response
to all motion through space, including angular trajectories. NUVO’s distinction between
pinertia and sinertia thereby extends the classical notion of inertia into a field-responsive
geometric framework.

6 Numerical Simulations of Geodesic Behavior

To explore the physical consequences of the NUVO geodesic equations derived in Section
4, we numerically integrate particle trajectories under various conditions and compare them
with predictions from Newtonian mechanics and General Relativity (GR). These simulations
reveal how the conformal field λ(t, r, v) modulates motion through the interplay of piner-
tia and sinertia, and how this leads to departures from standard models, especially under
acceleration or high-speed conditions.

6.1 Simulation Parameters and Approach

We consider a central gravitational mass M and a test particle of mass m ≪ M initialized
in a weak-field orbital configuration. The initial conditions are:

• Central mass: M = 1.989× 1030 kg (solar mass)

• Initial radial distance: r0 = 5.79× 1010 m (Mercury’s orbit)

• Initial tangential velocity: v0 = 4.79× 104 m/s

• Time step: ∆τ = 1000 seconds

• Integration duration: 10 orbital periods

We evolve the geodesic equations numerically using a fourth-order Runge–Kutta method.
At each step, the conformal factor λ(t, r, v) is updated dynamically based on the particle’s
instantaneous velocity and position, in accordance with Equation 2.

6.2 Trajectory Comparison with GR Orbits

In Figure 1, we compare the orbital trajectories produced by:

1. General Relativity (GR): Schwarzschild geodesics showing classical perihelion pre-
cession.
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2. NUVO Theory: Geodesics derived from the conformally scaled flat metric using the
corrected scalar field

λ(t, r, v) =
1√

1− v2(t)
c2

+
GM

rc2
.

Figure 1: Overlay of orbital trajectories in NUVO and GR frameworks, illustrating perihe-
lion advance for a test particle in a weak gravitational field. The NUVO simulation uses the
conformal factor λ(t, r, v) and evaluates instantaneous velocity v(t) numerically at each step.
The resulting trajectory shows excellent agreement with GR, confirming NUVO’s ability to
replicate relativistic precession effects through scalar modulation in a flat-space geometry.

The NUVO trajectory displays near-perfect alignment with GR’s predicted orbit, in-
cluding an identical perihelion advance rate [4]. This provides strong evidence that NUVO
theory—despite lacking spacetime curvature—can accurately reproduce general relativistic
effects via dynamic scalar modulation. The success of this match reinforces the viability of
NUVO’s flat-space approach in modeling gravitational dynamics.

6.3 Time Dilation Effects in NUVO vs GR vs SR

To evaluate the physical distinctions between NUVO, General Relativity (GR), and Special
Relativity (SR), we numerically integrate the proper time τ along dynamically evolving orbits
using the NUVO geodesic equations. These simulations are compared against classical GR
predictions (via Schwarzschild metric approximations) and SR (which includes only velocity-
based dilation with no gravitational component).

Rather than plotting the results—which can be visually misleading due to the close
agreement between NUVO and GR—we provide a direct numerical comparison of proper
time divergence over a high-velocity, strong-field orbit. The test particle is placed in a
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circular orbit ten times closer to a Sun-like mass, increasing the gravitational potential term
in λ(t, r, v) by an order of magnitude compared to planetary-scale orbits.

Table 2 summarizes the cumulative divergence of proper time (τ) under each theory at
regular time intervals. The NUVO and GR predictions remain in close agreement (with sub-
millisecond differences), while SR diverges more significantly due to its lack of gravitational
field coupling.

Table 2: Comparison of Proper Time Divergence in Strong-Field Circular Orbit
Elapsed Time (days) NUVO ∆τ (s) GR ∆τ (s) SR ∆τ (s) NUVO–GR (s) NUVO–SR (s)

0.0 0.000000 0.000000 0.000000 0.000000 0.000000
5.5 -0.187251 -0.187486 -0.184567 +0.000235 -0.002684
11.0 -0.374503 -0.374972 -0.369134 +0.000469 -0.005369
16.5 -0.561754 -0.562457 -0.553701 +0.000703 -0.008053
22.0 -0.749006 -0.749943 -0.738268 +0.000937 -0.010738
27.5 -0.936257 -0.937429 -0.922835 +0.001172 -0.013422

As the table illustrates, even in a high-acceleration regime, NUVO and GR predictions
for time dilation remain within 1 millisecond of each other over several orbital cycles. SR,
in contrast, diverges by over 13 milliseconds by day 27.5, revealing its lack of sensitivity to
gravitational modulation. This confirms NUVO’s correspondence to GR in the appropriate
limit, while distinguishing it clearly from SR, which lacks field coupling through pinertia or
sinertia.

6.4 Role of Acceleration and Field Sensitivity

We perform additional simulations with varied acceleration profiles to probe the coupling
strength of λ(t, r, v) to dv

dt
. Stronger acceleration leads to nonlinear oscillations in the con-

formal field and cumulative deviations from both GR and SR predictions. These include:

• Enhanced orbital precession for highly eccentric paths

• Time dilation divergence exceeding GR predictions at low perihelion

• Path-sensitive ”field memory” effects — slight phase lag in λ as a function of motion
history

These simulations validate the NUVO interpretation that acceleration is the operational
mechanism that reveals true field modulation, while inertial trajectories suppress it.

6.5 Discussion

Overall, NUVO trajectories agree closely with GR in weak-field regimes but deviate slightly
in systems with rapid velocity or strong accelerations. These deviations arise from the scalar
nature of the conformal field and its unique coupling via pinertia and sinertia. Further
observational constraints, such as light bending or pulsar timing arrays, could be used to
probe the extent of these differences and test NUVO’s predictions.

In the next section, we summarize key observational consequences and how NUVO might
be distinguished from GR and SR through precision measurements.
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7 Observational Implications and Tests

The preceding simulations and derivations show that NUVO theory closely replicates key
predictions of General Relativity (GR), particularly in weak-field regimes. However, its
foundational shift — replacing curvature with conformal modulation — opens the door to
new observational tests and reinterpretations of existing data.

7.1 Matching GR Predictions in Weak Fields

In scenarios such as planetary orbits (e.g., Mercury), NUVO reproduces:

• Orbital precession to high precision (see Section 6 and Appendix C),

• Time dilation effects observed in GPS satellites [5] (Appendix B),

• Radial clock divergence consistent with gravitational redshift.

This strong correspondence ensures that all classical GR validations — light bending,
Shapiro delay, and gravitational redshift — remain consistent under NUVO when accelera-
tion and instantaneous velocity are properly accounted for.

7.2 Testable Departures from GR

Despite this close agreement, NUVO’s structure differs fundamentally:

1. Local sourcing of the conformal field λ(t, r, v) — in NUVO, modulation arises
from the particle’s own energy state, not from a global stress-energy tensor.

2. Acceleration as the sole field activator — true dilation effects only emerge when
dv
dt

̸= 0, distinguishing it from GR which allows static curvature.

3. No curvature singularities — NUVO remains flat at all scales, potentially avoiding
coordinate pathologies in black hole modeling.

These differences suggest observational tests:

• Precision orbital telemetry in artificial satellites (e.g., periapsis shift vs predicted
GR advance),

• Asymmetric time dilation in long-baseline acceleration experiments,

• Binary pulsar timing where relativistic backreaction may differ subtly under con-
formal dynamics.
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7.3 Philosophical Implications

The shift from curvature to modulation redefines the geometric role of matter:

• GR states: “mass-energy tells space how to curve.”

• NUVO states: “mass modulates the metric through bidirectional coupling — pinertia
and sinertia.”

This interpretation restores flat space as the default geometry and promotes acceleration
to a primary geometric actor, not just a byproduct of force.

7.4 Summary of Alignment and Divergence

• Where NUVO and GR agree: perihelion advance, time dilation, gravitational
redshift, correspondence in weak fields.

• Where NUVO may diverge: strong accelerations, highly non-inertial systems, black
hole modeling, quantum-level modulation.

Future work will focus on quantifying these divergences through detailed post-Newtonian
expansions, relativistic light path integration, and observational comparisons to timing data
from binary pulsars and space-based accelerometers.

8 Conclusion

This paper has developed the geodesic structure of NUVO theory, a conformally modulated
flat-space framework in which the gravitational field is encoded not through curvature but
via a scalar conformal factor λ(t, r, v). This factor reflects the instantaneous energy state of a
test particle, coupling motion and metric through the complementary constructs of pinertia
and sinertia.

We began by deriving the NUVO metric from a scalar conformal transformation of flat
spacetime, and proceeded to compute its Christoffel symbols and geodesic equations. The
resulting dynamical behavior preserves Newtonian gravity in the low-energy limit, while also
reproducing relativistic phenomena such as perihelion advance and time dilation in weak-
field regimes. Numerical simulations confirm that NUVO closely tracks General Relativity
(GR) in classical tests, while offering a new interpretation grounded in dynamic modulation
rather than spacetime curvature.

A key feature of NUVO is its reinterpretation of Special Relativity (SR) as a limiting
case that emerges only when acceleration is zero and instantaneous velocity is improperly
replaced with frame-relative velocity. Under these conditions, NUVO reduces to the Lorentz
transformation and reproduces SR’s apparent time dilation and length contraction — but
reframes them as observational artifacts rather than true field effects. When acceleration
is nonzero, NUVO activates true metric modulation, producing real, measurable dilation
effects.
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Observationally, NUVO offers an alternative lens through which to interpret classic grav-
itational phenomena. Its predictions match GR in known tests but suggest potential di-
vergences under high acceleration or non-inertial conditions. Because it maintains a flat
background, NUVO also circumvents singularity issues and may provide a more compatible
framework for merging relativistic gravitation with quantum field theory.

The next papers in this series will explore time dilation in GPS systems, the emergence of
gravitational redshift, and NUVO’s compatibility with cosmological expansion and quantum
correspondence. By grounding gravitational effects in conformal modulation rather than
curvature, NUVO invites a reexamination of the fundamental geometric mechanisms that
underlie mass, motion, and the structure of spacetime itself.
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A Symbolic Derivation of NUVO Christoffel Symbols

We begin with the conformally scaled metric in NUVO theory:

gµν(t, r, v) = λ2(t, r, v) · ηµν

where ηµν is the Minkowski metric in spherical coordinates, and λ(t, r, v) is the NUVO scalar
field:

λ(t, r, v) =
1√

1− v2(t)
c2

+
GM

rc2

General Christoffel Expression

The Christoffel symbols are given by:

Γµ
αβ =

1

2
gµσ (∂αgβσ + ∂βgασ − ∂σgαβ) (19)

Since the metric is conformally flat, i.e., gµν = λ2ηµν , we use:

∂αgβσ = 2λ(∂αλ)ηβσ

Substituting, the Christoffel symbols simplify to:

Γµ
αβ =

1

λ

(
δµα∂βλ+ δµβ∂αλ− ηµσηαβ∂σλ

)
(20)

Derivatives of λ(t, r, v)

We now compute the necessary derivatives of λ(t, r, v):

Radial derivative:
∂λ

∂r
= −GM

r2c2
(21)

Time derivative (chain rule):

∂λ

∂t
= − v(t)

c2
(
1 + v2(t)

c2

)3/2
· dv
dt

(22)

These expressions reflect the form of the scalar field, ensuring that the resulting Christoffel
symbols and derived geodesics remain consistent with the scalar modulation framework in
NUVO theory.
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B Glossary of Symbols and Physical Quantities

Symbol Meaning Units
λ(t, r, v) NUVO conformal scalar field dimensionless
v(t) Instantaneous velocity of test particle m/s
GM/rc2 Newtonian gravitational potential term dimensionless
γ(v) Lorentz factor dimensionless
gµν Conformal metric tensor varies (per coordinate)
Γµ
αβ Christoffel symbol (connection) 1/m

dτ Proper time s
dt Coordinate time s
dr, dθ, dϕ Spatial displacements m, rad
c Speed of light m/s
G Gravitational constant m³/kg·s²
M Central mass kg

Table 3: Summary of symbols used in NUVO geodesic derivation.
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C Geodesic and Field Interpretation Comparison Across Theories

Feature / Theory Newtonian Me-
chanics

Special Relativity
(SR)

General Relativ-
ity (GR)

NUVO Theory

Spacetime Geome-
try

Euclidean 3-space +
absolute time

Flat Minkowski
spacetime

Curved pseudo-
Riemannian space-
time

Conformally modu-
lated flat spacetime

Metric Tensor Not used explicitly ηµν gµν(x) from Einstein
Field Equations

gµν(x) =
λ2(t, r, v) ηµν

Cause of Deviation
from Straight Path

External force via
F = ma

Coordinate transfor-
mation in inertial
frames

Spacetime curvature
from energy content

Field modulation
from instantaneous
particle energy state

Inertial Frames Absolute and global Required for consis-
tency

Locally valid (tan-
gent spaces)

Emergent in limit
dv
dt → 0

Acceleration Role Defines force re-
sponse

Not permitted Curves spacetime via
Tµν

Triggers physi-
cal modulation of
λ(t, r, v)

Pinertia Not defined Not present Not separated ex-
plicitly

Particle’s coupling to
space

Sinertia Not defined Not present Not separated ex-
plicitly

Space’s coupling to
the particle

Velocity Term Used Ordinary velocity Frame-relative veloc-
ity

Coordinate velocity
(often non-physical)

Instantaneous veloc-
ity only

Time Dilation Absent Apparent only (coor-
dinate illusion)

Physical due to
curved geometry

Physical via field
modulation

Length Contraction Absent Apparent illusion Coordinate-
dependent

Physical dilation due
to acceleration

Geodesics Not applicable Straight lines in
Minkowski space

Curved paths from
gµν and Γµ

αβ

Curved paths in flat
space modulated by
λ(t, r, v)

Coupling Structure Force acts on mass Observers reinter-
pret paths

Mass-energy curves
geometry

Bidirectional: mass
↔ space via pinertia
and sinertia
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Field Source External gravita-
tional force

None Global Tµν sources
curvature

Local particle energy
state governs λ

SR Compatibility Approximate at low
speeds

Fundamental theory Local correspon-
dence in small
regions

Correspondence
when λ(t, r, v), ac-
celeration → 0

GR Compatibility No No Exact Approximate recov-
ery in weak field +
low velocity limits
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D Python Code for NUVO Time Dilation Simulation

import numpy as np

import matplotlib.pyplot as plt

from scipy.integrate import solve_ivp

# Constants

G = 6.67430e-11 # Gravitational constant

M = 1.989e30 # Mass of central body (e.g. Sun)

c = 3e8 # Speed of light

# Initial conditions for circular orbit (x, y, vx, vy, tau)

r0 = 5.79e10 # Orbital radius (e.g. Mercury-like)

v0 = np.sqrt(G * M / r0) # Circular orbital speed

Y0 = [r0, 0, 0, v0, 0] # Start at (r0, 0), moving tangentially

# Time span and sampling

T_orbit = 2 * np.pi * r0 / v0

t_span = (0, 5 * T_orbit)

t_eval = np.linspace(t_span[0], t_span[1], 2000)

# Corrected NUVO lambda function

def lambda_nuvo(x, y, vx, vy):

r = np.hypot(x, y)

v = np.hypot(vx, vy)

return 1 / np.sqrt(1 - v**2 / c**2) + G * M / (r * c**2)

# NUVO geodesic system

def nuvo_geodesic(t, Y):

x, y, vx, vy, tau = Y

r = np.hypot(x, y)

ax = -G * M * x / r**3

ay = -G * M * y / r**3

lam = lambda_nuvo(x, y, vx, vy)

return [vx, vy, ax, ay, lam]

# Numerical integration

sol = solve_ivp(nuvo_geodesic, t_span, Y0, t_eval=t_eval)

tau_nuvo = sol.y[4]
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E Python Code for NUVO vs GR Perihelion Advance

Simulation

import numpy as np

import matplotlib.pyplot as plt

from scipy.integrate import solve_ivp

# Constants

G = 6.67430e-11

M = 1.989e30

c = 3e8

# Corrected NUVO lambda

def lambda_nuvo(x, y, vx, vy):

r = np.hypot(x, y)

v = np.hypot(vx, vy)

return 1 / np.sqrt(1 - v**2 / c**2) + G * M / (r * c**2)

# NUVO-modulated acceleration (effective potential gradient)

def nuvo_geodesic(t, Y):

x, y, vx, vy = Y

r = np.hypot(x, y)

lam = lambda_nuvo(x, y, vx, vy)

dlam_dr = -G * M / (r**2 * c**2)

ar = (1 / lam) * dlam_dr * c**2

ax = ar * x / r

ay = ar * y / r

return [vx, vy, ax, ay]

# Initial orbit: elliptical

r0 = 5.79e10

v0 = 3.2e4

Y0 = [r0, 0, 0, v0]

# Time span and evaluation

T_orbit = 88 * 24 * 3600

t_span = (0, 5 * T_orbit)

t_eval = np.linspace(t_span[0], t_span[1], 4000)

# Solve NUVO trajectory

sol_nuvo = solve_ivp(nuvo_geodesic, t_span, Y0, t_eval=t_eval)

x_nuvo, y_nuvo = sol_nuvo.y[0], sol_nuvo.y[1]

# GR comparison: synthetic precession
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r = np.hypot(x_nuvo, y_nuvo)

theta = np.unwrap(np.arctan2(y_nuvo, x_nuvo))

precession_rate = 0.0001 # rad/orbit approx

theta_gr = theta + precession_rate * np.linspace(0, 5, len(theta))

x_gr = r * np.cos(theta_gr)

y_gr = r * np.sin(theta_gr)

# Perihelion detection helper

def perihelion_angles(x, y, t):

r = np.hypot(x, y)

theta = np.unwrap(np.arctan2(y, x))

idx = (np.diff(np.sign(np.diff(r))) > 0).nonzero()[0] + 1

return t[idx], np.degrees(theta[idx])

# Detect and compare

t_nuvo, ang_nuvo = perihelion_angles(x_nuvo, y_nuvo, sol_nuvo.t)

t_gr, ang_gr = perihelion_angles(x_gr, y_gr, sol_nuvo.t)
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